什么是方差?什么叫方差
方差是什么
方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ²表示。
方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。
方差和标准差是测度数据变异程度的最重要、最常用的指标。
标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。
方差是各个数据与平均数之差的平方的平均数。
举例:1.2.3.4.5这五个数的平均数是3,所以这五个数的方差就是 1/5[(1-3)²+(2-3)²+(3-3)²+(4-3)²+(5-3)²]=2。
什么是方差分析
方差分析:根据不同需要把某变量方差分解为不同的部分,比较它们之间的大小并用F检验进行显著性检验的方法。又称“变异数分析”或“F检验”,是用于两个及两个以上样本均数差别的显著性检验。
F值是两个均方的比值[效应项/误差项],不可能出现负值。F值越大[与给定显著水平的标准F值相比较]说明处理之间效果[差异]越明显,误差项越小说明试验精度越高。
扩展资料:
方差分析,又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1)实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。
(2)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SSw,组内自由度dfw。
总偏差平方和 SSt= SSb+ SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw=n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差是衡量源数据和期望值相差的度量值。
1、设C是常数,则D(C)=0
2、设X是随机变量,C是常数,则有
3、设 X与 Y是两个随机变量,则
其中协方差特别的,当X,Y是两个不相关的随机变量则
此性质可以推广到有限多个两两不相关的随机变量之和的情况。
4、D(X)=0的充分必要条件是X以概率1取常数E(X),即
(当且仅当X取常数值E(X)时的概率为1时,D(X)=0。)
注:不能得出X恒等于常数,当x是连续的时候X可以在任意有限个点取不等于常数c的值。
参考资料:百度百科-方差分析
什么叫方差
1,数学期望:公式离散型随机变量X的取值为,为X对应取值的概率,可理解为数据出现的频率,则:
2,方差是实际值与期望值之差平方的平均值,而标准差是方差算术平方根。[5]在实际计算中,我们用以下公式计算方差。方差是各个数据与平均数之差的平方的和的平均数,即:,其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。
扩展资料:在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。
需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。
大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。
参考资料:百度百科-方差百度百科-数学期望声明:本文由"麦兜兜"发布,不代表"叁陆信息"立场,转载联系作者并注明出处:https://www.360eip.com/soc/154823.html