麦考利久期?什么是麦考利久期
麦考利久期是如何定义的
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
扩展资料:
久期定理
定理一:只有零息债券的马考勒久期等于它们的到期时间。
定理二:直接债券的马考勒久期小于或等于它们的到期时间。
定理三:统一公债的马考勒久期等于(1+1/y),其中y是计算现值采用的贴现率。
定理四:在到期时间相同的条件下,息票率越高,久期越短。
定理五:在息票率不变的条件下,到期时间越久,久期一般也越长。
定理六:在其他条件不变的情况下,债券的到期收益率越低,久期越长。
参考资料来源:百度百科-久期
麦考利久期是什么
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx。其中,PVXi表示第i期现金流的现值,D表示久期。
久期定理
1、只有零息债券的麦考利久期等于它们的到期时间。
2、直接债券的麦考利久期小于或等于它们的到期时间。
3、统一公债的麦考利久期等于(1+1/y),其中y是计算现值采用的贴现率。
4、在到期时间相同的条件下,息票率越高,久期越短。
5、在息票率不变的条件下,到期时间越久,久期一般也越长。
6、在其他条件不变的情况下,债券的到期收益率越低,久期越长。
什么是麦考利久期
如果市场利率是Y,现金流(X1,X2,...,Xn)的麦考利久期定义为:D(Y)=[1*X1/(1+Y)^1+2*X2/(1+Y)^2+...+n*Xn/(1+Y)^n]/[X0+x1/(1+Y)^1+X2/(1+Y)^2+...+Xn/(1+Y)^n]
即 D=(1*PVx1+...n*PVxn)/PVx
其中,PVXi表示第i期现金流的现值,D表示久期。
扩展资料:
久期定理
定理一:只有零息债券的马考勒久期等于它们的到期时间。
定理二:直接债券的马考勒久期小于或等于它们的到期时间。
定理三:统一公债的马考勒久期等于(1+1/y),其中y是计算现值采用的贴现率。
定理四:在到期时间相同的条件下,息票率越高,久期越短。
定理五:在息票率不变的条件下,到期时间越久,久期一般也越长。
定理六:在其他条件不变的情况下,债券的到期收益率越低,久期越长。
参考资料来源:百度百科-久期
声明:本文由"麦兜兜"发布,不代表"叁陆信息"立场,转载联系作者并注明出处:https://www.360eip.com/soc/148060.html