数据仓库是什么 什么是数据仓库为什么要建立数据仓库数据仓库有什么特点
什么是数据仓库为什么要建立数据仓库数据仓库有什么特点
数据库是一个装数据(信息的原材料)的地方。数据仓库是一种系统,这种系统也是用数据库装东西。(这有点没说清楚:个人理解数据库和数据仓库当然都是装数据的地方,关键的区别是装的什么样的数据,数据库装的原始数据,没经过任何加工;而数据仓库是为了满足分析需要,对源数据进行了Transform过程,具体是怎样一个处理过程,可以从Bill Inmon的仓库定义四个特性进行理解。)数据仓库系统(用数据库装东西)与其他基础业务系统(例如财务系统、销售系统、人力资源系统等,也是用数据库装东西)的区别是:基础业务系统的特点是各管各的,例如财务系统生产了白菜,那么用一个数据库来装,人力资源系统生产了猪肉,再用一个数据库来装。我要做一道菜,需要分别到各个数据库去取,比较麻烦(现实的情况是大部分时候让种菜的农民伯伯送过来,但送过来的东西不一定是我想要的,而且不同的时候我想要不同的东西,经常会被农民伯伯骂,弄得双方都不开心)。另外一方面,各个数据库中放的是一些比较原始的东西,我要拿过来做菜,还需要经过很麻烦的清洗过程,一不小心里面可能就藏着一条大青虫。那么,数据仓库系统就是建立一个大的超市,将各地农民伯伯出产的东西收集过来,清洗干净,分门别类地放好。这样,你要哪种菜的时候,直接从超市里面拿就可以了。
数据仓库的特点是:
(1)数据仓库是面向主题的.
(2)数据仓库是集成的
(3)数据仓库具有时间相关性.
(4)数据仓库的数据是相对稳定的.
数据仓库可以说是决策支持系统(个人不同意这个观点,决策支持系统(DDS)是在管理信息系统的基础上发展起来的,在数据仓库、OLAP技术和数据挖掘工具出现以前,就已经有DSS了,但其在实际应用开发过程中暴露出许多问题,DW为克服传统DDS存在的问题提供了技术上的支持,基于DW上的DSS效果自然有很大提升),能帮助老板了解企业的整体全貌,看到数据仓库提供的经过整理统计归纳的数据后老板凭自己的管理经验可以发现企业的问题或困难或成功因素在哪一方面,然后可以不断的追溯数据,直到确定到最具体的细节上,这样能够不断提升老板或管理层的管理水平,不断改善企业的管理。我们知道的最好的一个例子就是美国某大型超市啤酒和尿布的故事。沃尔玛公司在美国的一位店面经理曾发现,每周,啤酒和尿布的销量都会有一次同比攀升,一时却搞不清是什么原因。后来,沃尔玛运用商业智能(Business Intelligence,简称BI)技术发现,购买这两种产品的顾客几乎都是25岁到35岁、家中有婴儿的男性,每次购买的时间均在周末。沃尔玛在对相关数据分析后得知,这些人习惯晚上边看球赛、边喝啤酒,边照顾孩子,为了图省事而使用一次性的尿布。得到这个结果后,沃尔玛决定把这两种商品摆放在一起,结果,这两种商品的销量都有了显著增加。数据库是数据仓库的基础。数据仓库实际上也是由数据库的很多表组成的(这句话明显不成立,数据仓库里表分为事实表和维表,这和数据库里的表还是有本质区别的,组织方式完全不一样,一个是面向主题,一个是面向业务的)。需要把存放大量操作性业务数据的数据库经过筛选、抽取、归纳、统计、转换到一个新的数据库中。然后再进行数据展现。老板关注的是数据展现的结果。
数据仓库是什么啊
数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合
数据仓库,英文名称为Data Warehouse,可简写为DW。
数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
◆面向主题:操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。
◆集成的:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
◆相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
◆反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
数据仓库是一个过程而不是一个项目。
数据仓库系统是一个信息提供平台,他从业务处理系统获得数据,主要以星型模型和雪花模型进行数据组织,并为用户提供各种手段从数据中获取信息和知识。
从功能结构化分,数据仓库系统至少应该包含数据获取(Data Acquisition)、数据存储(Data Storage)、数据访问(Data Access)三个关键部分
数据仓库是什么意思
数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
◆面向主题:操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。
◆集成的:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
◆相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
◆反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
声明:本文由"麦兜兜"发布,不代表"叁陆信息"立场,转载联系作者并注明出处:https://www.360eip.com/soc/147909.html